In theoretical physics, negative mass is a hypothetical concept of matter whose mass is of opposite sign to the mass of normal matter, e.g. −2 kg. Such matter would violate one or more energy conditions and show some strange properties, stemming from the ambiguity as to whether attraction should refer to force or the oppositely oriented acceleration for negative mass. It is used in certain speculative theories, such as on the construction of wormholes. The closest known real representative of such exotic matter is a region of pseudo-negative pressure density produced by the Casimir effect

Inertial versus gravitationalEdit

The earliest references to negative weight are due to the observation that metals gain weight when oxidizing in the study of phlogiston theory in the early 1700s. Ever since Newton first formulated his theory of gravity, there have been at least three conceptually distinct quantities called mass: inertial mass, "active" gravitational mass (that is, the source of the gravitational field), and "passive" gravitational mass (that is, the mass that is evident from the force produced in a gravitational field).  The Einstein equivalence principle postulates that inertial mass must equal passive gravitational mass; while the law of conservation of momentum  requires that active and passive gravitational mass be identical.  All experimental evidence to date has found these are, indeed, always the same.  In considering negative mass, it is important to consider which of these concepts of mass are negative; however, in most analyses of negative mass, it is assumed that the equivalence principle and conservation of momentum continue to apply. In 1957, Hermann Bondi suggested in a paper in Reviews of Modern Physics that mass might be negative as well as positive.[1]  He pointed out that this does not entail a logical contradiction, as long as all three forms of mass are negative, but that the assumption of negative mass involves some counter-intuitive form of motion.  For example,  an object with negative inertial mass would be expected to accelerate in the opposite direction to that in which it was pushed.

 ==Forward's analysis==Edit

Although no particles are known to have negative mass, physicists (primarily Hermann Bondi and  Robert L. Forward) have been able to describe some of the anticipated properties such particles may have. Assuming that all three concepts of mass are equivalent the gravitational interactions between masses of arbitrary sign can be explored. For two positive masses, nothing changes and there is a pull on each other causing an attraction. Two negative masses would produce a pull on one another, but would repel because of their negative inertial masses. For different signs there is a push that repels the positive mass but attracts the negative mass. Bondi pointed out that two objects of equal and opposite mass would produce a constant acceleration of the system towards the positive mass object. However, the total mass, momentum and energy of the system would remain 0.Template:Citation needed This behavior is completely inconsistent with a common-sense approach and the expected behaviour of 'normal' matter; but is completely mathematically consistent and introduces no violation of conservation of momentum or energy. If the masses are equal in magnitude but opposite in sign, then the momentum of the system remains zero if they both travel together and accelerate together, no matter what their speed: :$ P_{sys} = mv + (-m)v = [m+(-m)]v = 0\times v = 0. $ And equivalently for the kinetic energy $ K_e $: :$ K_{e\ sys} = {1 \over 2} mv^2 + {1 \over 2}(-m)v^2 = {1 \over 2}[m+(-m)]v^2 = {1 \over 2}(0)v^2 = 0 $ Forward extended Bondi's analysis to additional cases, and showed that even if the two masses m(-) and m(+) are not the same, the conservation laws remain unbroken. This is true even when relativistic effects are considered, so long as inertial mass, not rest mass, is equal to gravitational mass. This behaviour can produce bizarre results: for instance, a gas containing a mixture of positive and negative matter particles will have the positive matter portion increase in temperature without bound. However, the negative matter portion gains negative temperature at the same rate, again balancing out.  Geoffrey A. Landis pointed out other implications of Forward's analysis,[2] including noting that although negative mass particles would repel each other gravitationally, the electrostatic force would be attractive for like-charges and repulsive for opposite charges. Forward used the properties of negative-mass matter to create the diametric drive, a design for spacecraft propulsion using negative mass that requires no energy input and no reaction mass to achieve arbitrarily high acceleration. Forward also coined a term, "nullification" to describe what happens when ordinary matter and negative matter meet: they are expected to be able to "cancel-out" or "nullify" each other's existence.  An interaction between equal quantities of positive and negative mass matter would release no energy, but since the only configuration of such particles which has zero momentum (both particles moving with the same velocity in the same direction) does not produce a collision, all such interactions would leave a surplus of momentum, which is classically forbidden. 

Classical gravitational field theoryEdit

In electromagnetism one can derive the energy density of a field from Gauss's law, assuming the curl of the field is 0. Performing the same calculation using Gauss's law for gravity produces a negative energy density for a gravitational field. ==Schrödinger equation==In the Schrödinger equation, the wavefunction is wavelike wherever the particle's kinetic energy would be positive, and exponential-like (evanescent) wherever it would be negative. For wavefunctions of particles with zero rest mass (such as photons), this means that any evanescent portions of the wavefunction are associated with a local negative mass–energy. ==In general relativity==In general relativity, negative mass is generalized to refer to any region of space in which for some observers the mass density is measured to be negative.  This could occur due a region of space in which the stress component of the Einstein stress–energy tensor is larger in magnitude than the mass density.  All of these are violations of one or another variant of the positive energy condition of Einstein's general theory of relativity; however, the positive energy condition is not a required condition for the mathematical consistency of the theory.  (Various versions of the positive energy condition, weak energy condition, dominant energy condition, etc., are discussed in mathematical detail by Visser.[3]Morris, Thorne and Yurtsever[4] pointed out that the quantum mechanics of the Casimir effect can be used to produce a locally mass-negative region of space–time.  In this article, and subsequent work by others, they showed that negative matter could be used to stabilize a wormhole. Cramer et al. argue that such wormholes might have been created in the early universe, stabilized by negative-mass loops of cosmic string.[5] Stephen Hawking has proved that negative energy is a necessary condition for the creation of a closed timelike curve by manipulation of gravitational fields within a finite region of space;[6] this proves, for example, that a finite Tipler cylinder cannot be used as a time machine.

 ==Gravitational interaction of antimatter==Edit

Main article: Gravitational interaction of antimatterVirtually every modern physicist suspects that antimatter has positive mass and should be affected by gravity just like normal matter, although it is thought that this view has not yet been conclusively empirically observed.[7][8] It is difficult to directly observe gravitational forces at the particle level: at such small scales, electric forces tend to overwhelm gravitational interactions, especially since the methods of antimatter production currently in use typically generate very energetic particles.  Furthermore, antiparticles must be kept separate from their normal counterparts or they will quickly annihilate. It is hoped that the ATRAP antimatter experiments will be able to make direct measurements. Bubble chamber experiments are often cited as evidence that antiparticles have the same inertial mass as their normal counterparts, but a reversed electric charge. In these experiments, the chamber is subjected to a constant magnetic field which causes charged particles to travel in helical paths; the radius and direction of which correspond to the ratio of electric charge to inertial mass. Particle–antiparticle pairs are seen to travel in helices with opposite directions but identical radii, implying that the ratios differ only in sign; but this does not indicate whether it is the charge or the inertial mass which is inverted. However, particle–antiparticle pairs are observed to electrically attract one another, often as the prelude to annihilation. This behavior implies that both have positive inertial mass and opposite charges; if the reverse were true, then the particle with positive inertial mass would be repelled from its antiparticle partner. 

See alsoEdit

  1. Template:Cite journal
  2. Template:Cite journal
  3. ==Further reading==
    • Template loop detected: Template:Cite book
    • Template loop detected: Template:Cite book
    • {{cite book | first=Robert | last=Heinlein | authorlink= | date=1980 | title=Expanded Universe | edition= | publisher=Ace Books | location=New York |
  4. Template:Cite journal
  5. Template:Cite journal
  6. ==Further reading==
    • Template loop detected: Template:Cite book
    • Template loop detected: Template:Cite book
    • {{cite book | first=Robert | last=Heinlein | authorlink= | date=1980 | title=Expanded Universe | edition= | publisher=Ace Books | location=New York |
  7. Does antimatter fall up or down?
  8. Antimatter FAQ
Template:Use dmy dates 
Community content is available under CC-BY-SA unless otherwise noted.